Electronic Band Structure of Ru3Sn7
نویسندگان
چکیده
منابع مشابه
Electronic band structure of a Carbon nanotube superlattice
By employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (CNT) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. Exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. The calculations are base...
متن کاملElectronic band structure of a Carbon nanotube superlattice
By employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (CNT) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. Exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. The calculations are base...
متن کاملelectronic band structure of a carbon nanotube superlattice
by employing the theoretical method based on tight-binding, we study electronic band structure of single-wall carbon nanotube (cnt) superlattices, which the system is the made of the junction between the zigzag and armchair carbon nanotubes. exactly at the place of connection, it is appeared the pentagon–heptagon pairs as topological defect in carbon hexagonal network. the calculations are base...
متن کاملTight- binding study of electronic band structure of anisotropic honeycomb lattice
The two-dimensional structure of graphene, consisting of an isotropic hexagonal lattice of carbon atoms, shows fascinating electronic properties, such as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. Anisotropy can be induced in this structure by electrochemical pressure. In this article, by using tight-binding method, we review anisotropy effects in the elect...
متن کاملElectronic band structure of calcium oxide
We have measured the bulk energy-momentum resolved valence band structure of calcium oxide by the means of electron momentum spectroscopy (EMS). We have extracted the band dispersions, bandwidths and inter-valance gap, electron momentum density (EMD) and density of occupied states (DOS) from the measured data. The experimental results are compared with theoretical band structure calculations pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Physica Polonica A
سال: 2015
ISSN: 0587-4246,1898-794X
DOI: 10.12693/aphyspola.127.303